什么是Omega-3甘油三酯和乙基酯?
甘油三酯 (TG)是脂肪通常在体内储存的方式,它们构成了饮食中约95%的脂肪。因此,它们是鱼中Omega-3的天然形式[1]。之所以叫甘油三酯,是因为它们含有3种脂肪酸附着在甘油骨干上。Omega-3补充剂中的两种主要Omega-3脂肪酸是二十碳五烯酸(EPA)和二十二碳六烯酸(DHA)。
乙基酯(EE)通过打破脂肪酸与其甘油骨干之间的键,在实验室中人工制造。然后,在称为转酯化的过程中,单一脂肪酸附着在乙醇分子上。很多厂商之所以生产EE型鱼油,是因为有必要浓缩鱼油来来获得高浓度 EPA 和 DHA Omega-3 补充剂。如果不浓缩鱼油,就很难得到适当剂量的Omega-3。
综上,EE型鱼油在技术上属于鱼油浓缩物,而不是真正的鱼油,只能算半合成品。因为虽然乙醇和脂肪酸都是天然物质,但在自然界中却从未真正发现过,都是人工合成的。
为什么买TG型鱼油这么重要?
第一个原因是,由于TG型鱼油是纯天然的,生物利用性比EE型鱼油高得多[3,7-11],这意味着和EE型鱼油相比,TG型鱼油在EPA和DHA的吸收和利用方面强于EE型鱼油[2]。
第二个原因是,EE型鱼油的非自然化学配方意味着它们在小肠中被胆汁酸乳化后,必须以不同的方式被胰脂肪酶分解。这些酶必须把乙醇从油的EE形式的脂肪酸中去除,然后把它附着在膳食中的其他甘油上形成甘油三酯,然后才能被完全吸收。
这就是为什么我们应该选择TG型鱼油, 而不是EE型鱼油。
吸收发生在肠道壁内称为肠细胞的细胞中。只有完成这个过程,Omega-3脂肪酸才能通过胸腔上的淋巴系统输送,并最终进入胸管的血液。与 TG 鱼油相比,EE 型鱼油效率更低,速度也慢得多[8,10]。
(蓝跃三文鱼油均为TG型鱼油)
一项特别研究表明,胰腺脂酶在EE型鱼油中水解的效率比在TG型鱼油中水解甘油键低10至50倍[12]。
另外,EE型鱼油比TG型鱼油更快且更容易氧化。多不饱和脂肪酸由于其双重键结构,本身就特别容易氧化,这也是为什么鱼油总是含有抗氧化剂,以防止这种氧化发生。多项研究表明,通过过氧化物和甲氧基苯胺值测量,EE型鱼油在所有温度下氧化的速度都快于TG型鱼油[13-16]。
TG型鱼油比EE型鱼油好多少?
一项研究表明,TG型鱼油在Omega-3方面的吸收率比EE型鱼油高71%[3]。另一项研究发现,游离脂肪酸的吸收率比EE型高400%[6]。
科学界和医学界尚未充分认识到不同类型的鱼油产生不同的效果和结果。Omega-3是医学史上研究最多的物质之一,但迄今为止,大部分研究只测试了EE型鱼油的益处。好在更多的研究开始表明,一旦被吸收到体内,EE型鱼油和TG型鱼油有不同影响。
例如,一项为期六个月的研究表明,TG型比EE的Omega-3补充剂有更好的生物可用性[4],TG型鱼油在减少循环血液甘油水平方面明显优于EE型鱼油[5]。血液中循环甘油三酯水平是一个重要的CV风险标记,也是用于诊断代谢综合征的标准之一。
·总结:经大量实验研究结果可得,TG型鱼油优于EE型鱼油,主要体现在如下几点:
1.TG型鱼油为天然结构,EE型多为人工浓缩而成;
2.TG型鱼油的EDA和DHA被吸收和利用方面强于EE型鱼油;
3.EE型鱼油比TG型鱼油更快且更容易被氧化;
4.TG型鱼油在Omega-3方面的吸收率远大于EE型鱼油……
参考资料:
[0]intelligentlabs.com:《What’s The Difference Between Triglyceride And Ethyl Ester Omega-3 Fish Oil?》
[1] H Carlier, A Bernard, C Caselli. Digestion and absorption of polyunsaturated fatty acids. Reproduction Nutrition Development, EDP Sciences, 1991, 31 (5), pp.475-500
[2] Schuchardt, J., & Hahn, A. (2013). Bioavailability of long-chain omega-3 fatty acids. Prostaglandins, Leukotrienes, and Essential Fatty Acids (PLEFA), 89(1), 1-8.
[3] Dyerberg, J., Madsen, P., Møller, J., Aardestrup, I., & Schmidt, E. (2010). Bioavailability of marine n-3 fatty acid formulations. Prostaglandins, Leukotrienes and Essential Fatty Acids (PLEFA), 83(3), 137-141.
[4] J Neubronner, J.P. Schchardt, G Kressel, M. Merkel, C von Schacky, Ahahn. Enhanced increase of omega-3 index in response to long term n-3 fatty acid supplementation from triacyglycerides versus ethyl esters, Eur J. Clin Nutr. 65 (2011) 247 -254.
[5] J.P. Schuchardt, J. Neubronner, G Kressel, M Merkel, C von Schacky, A Hahn. Moderate doses of EPA and DHA from re-esterified triacyglycerols but not from ethyl-ester lower fasting serum triacyglycerols in statin-treated dyslipidemic subjects: results from a 6 month randomised controlled trial.
[6] Davidson MH, Johnson J, Rooney MW, Kyle ML, Kling DF. A novel omega-3 free fatty cid formulation has dramatically improved bioavailability during a low fat diet compared with omega-3-acid ethyl ester: The ECLIPSE (Epanova compared to Lovaza in a pharmacokinetic single dose evaluation) study. J coin Lipidol 2012;6:573-84.
[7] El Boustani S, Colette C, Monnier L, Descomps B, Crastes de Paulet A, Mendy F. Enteral absorption in man of eicosapentaenoic acid in different chemical forms. Lipids 1987; 22:711-4.
[8] Lawson LD, Hughes BG. Absorption of eicosapentaenoic acid and docosahexaenoic acid from fish oil triacyglyceriols or fish oil ethyl esters co investigated with a high fat meal. Biochem Biopsy REs Commun 1998: 156:960-3
[9] Lawson LD, Hughes BG. Human absorption of fish oil fatty acids as triacyglycerols, free acids, or ethyl esters. Biochem Biopsy REs Commun 1998: 152: 328-35.
[10] BeckermannB, Beneke M, Seitz l. Comparative bioavailability of eicosapentaenoic acid and docasahexaenoic acid from triglycerides, free fatty acids and ethyl esters in volunteers. Arneimmittelforschung 1990;40:700-4.
[11] Schuchardt JP, Schneider I, Meyer H, Neubronner J, von Schacky C, Hahn A. Incorporation of EPA and DHA into plasma phospholipids in respnse to different omega-3 fatty acid formulations- a comparative bioavailability study of fish oil vs krill oil. Lipids Health Dis 2011;10:145
.[12] Yang, L.Y., A. Kuksis, and J.J. Myher, Lipolysis of menhaden oil triacylglycerols and the corresponding fatty acid alkyl esters by pancreatic lipase in vitro: a reexamination. J Lipid Res, 1990. 31(1): p. 137-47.
[13] Lee, H., et al., Analysis of headspace volatile and oxidized volatile compounds in DHA-enriched fish oil on accelerated oxidative storage. J Food Sci, 2003. 68(7): p. 2169-77.
[14] Yoshii, H., et al., Autoxidation kinetic analysis of docosahexaenoic acid ethyl ester and docosahexaenoic triglyceride with oxygen sensor. Biosci Biotechnol Biochem, 2002. 66(4): p. 749-53.
[15] Litiwinienko, G., Daniluk, A., & Kasprzycka-Guttman, T. , Study on autoxidation kinetics of fats by differential scanning calorimetry. 1. Saturated C12-C18 fatty acids and their esters. . Ind Eng Chem Res 2000. 39(1): p. 7-12.
[16] Sullivan Ritter, J.C., S.M. Budge, and F. Jovica, Oxidation rates of triglyceride and ethyl ester fish oils. Submitted to Food Chem (in review), 2014.